Geometry - OAS Standards Aligned to MVP Curriculum

*This document is for MVP lessons only. It does not account for the Ready, Set, Go Practice Problems.

		OAS-M	Corresponding MVP Lesson(s)	
		Red Indicates no corresponding MVP lesson.	Corresponding OK Framework	
Reasoning & Logic (G.RL.)				
		Understand the use of undefined terms, definitions, postulates, and theorems in		
	G.RL.1.1	logical arguments/proofs.	1.1, 1.2, 1.4, 3.2, 3.3	
		Analyze and draw conclusions based on a set of conditions using inductive and		
G.RL.1 Use appropriate		deductive reasoning. Recognize the logical relationships between a conditional		
tools and logic to	G.RL.1.2	statement and its inverse, converse, and contrapositive.	3.1, 3.2	
evaluate mathematical		Assess the validity of a logical argument and give counterexamples to disprove a		
arguments	G.RL.1.3	statement.	A2.3.6	
		Geometry: Tow-Dimensional Shapes (G.2D)		
		Apply the properties of parallel and perpendicular lines, including properties of angles		
		formed by a transversal, to solve real-world and mathematical problems and		
	G.2D.1.1	determine if two lines are parallel, using algebraic reasoning and proofs.	3.4, 3.5, 3.7, 4.3, 4.4, 4.5	
G.2D.1 Discover,		Apply the properties of angles, including corresponding, exterior, interior, vertical,		
evaluate and analyze		complementary, and supplementary angles to solve real-world		
the relationships	G.2D.1.2	and mathematical problems using algebraic reasoning and proofs.	3.4, 3.5, 3.6, 3.7, 4.4, 4.5, 4.7	
between lines, angles,		Apply theorems involving the interior and exterior angle sums of polygons and use		
and polygons to solve		them to solve real-world and mathematical problems using algebraic reasoning and		
real-world and	G.2D.1.3	proofs.	3.1, 3.2, 3.8	
mathematical problems;		Apply the properties of special quadrilaterals (square, rectangle, trapezoid, isosceles		
express proofs in a form		trapezoid, rhombus, kite, parallelogram) and use them to solve real-world and		
that clearly justifies the		mathematical problems involving angle measures and segment lengths using algebraic		
reasoning, such as two-	G.2D.1.4	reasoning and proofs.	1.5, 1.6, 1.7, 3.2, 3.7, 3.8, 4.6	
column proofs,				
paragraph proofs, flow		Use coordinate geometry to represent and analyze line segments and polygons,		
charts, or illustrations.	G.2D.1.5	including determining lengths, midpoints, and slopes of line segments.	6.1, 6.2, 6.3	
		Apply the properties of polygons to solve real-world and mathematical problems		
		involving perimeter and area (e.g., triangles, special quadrilaterals, regular polygons up		
	G.2D.1.6	to 12 sides, composite figures).	5.4, 6.1	

			T
		Apply the properties of congruent or similar polygons to solve real-world and	
	G.2D.1.7	mathematical problems using algebraic and logical reasoning.	2.4, 4.2, 4.3, 4.4, 4.5
		Construct logical arguments to prove triangle congruence (SSS, SAS, ASA, AAS and HL)	
	G.2D.1.8	and triangle similarity (AA, SSS, SAS).	2.4, 2.5
		Use numeric, graphic and algebraic representations of transformations in two	
		dimensions, such as reflections, translations, dilations, and rotations about the origin	
		by multiples of 90°, to solve problems involving figures on a coordinate plane and	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.3,
	G.2D.1.9	identify types of symmetry.	2.4, 3.3, 4.1
		Geometry: Three-Dimensional Shapes (G.3D)	
		Solve real-world and mathematical problems using the surface area and volume of	
		prisms, cylinders, pyramids, cones, spheres, and composites of these figures. Use nets,	
G.3D.1 Solve real-world	G.3D.1.1	measuring devices, or formulas as appropriate.	7.4
and mathematical			
problems involving		Use ratios derived from similar three-dimensional figures to make conjectures,	
three-dimensional		generalize, and to solve for unknown values such as angles, side lengths, perimeter or	
figures.	G.3D.1.2	circumference of a face, area of a face, and volume.	5.10, 5.11
g. s.		Geometry: Circles (G.C)	
		Apply the properties of circles to solve problems involving circumference and area,	
G.C.1 Solve real-world	G.C.1.1	approximate values and in terms of π , using algebraic and logical reasoning.	Unit 9, Big Idea 1
and mathematical	G.C.1.1	Apply the properties of circles and relationships among angles; arcs; and distances in a	Office 9, big face 1
problems using the		circle among radii, chords, secants and tangents to solve problems using algebraic and	
properties of circles.	G.C.1.2	logical reasoning.	3.2, 5.3, 5.6
properties of circles.	G.C.1.2	Recognize and write the radius r , center (h,k) , and standard form of the equation of a	5.2, 5.3, 5.0
	C C 1 2	circle $(x - h)^2 + (y - k)^2 = r^2$ with and without graphs.	646566
	G.C.1.3	Apply the distance and midpoint formula, where appropriate, to develop the equation	6.4, 6.5, 6.6
	6614	of a circle in standard form.	C 4
	G.C.1.4		6.4
	1	Geometry: Right Triangle Trigonometry	
		Apply the distance formula and the Pythagorean Theorem and its converse to solve	
		real-world and mathematical problems, as approximate and exact values, using	
	G.RT.1.1	algebraic and logical reasoning (include Pythagorean Triples).	4.9, 4.10, 4.11
G.RT.1 Develop and		Verify and apply properties of right triangles, including properties of 45-45-90 and 30-	
verify mathematical		60-90 triangles, to solve problems using algebraic and apply properties of right	
relationships of right		triangles, including properties of 45-45-90 and 30-60-90 triangles, to solve problems	
triangles and	G.RT.1.2	using algebraic and logical reasoning.	4.8, 7.5

trigonometric ratios to		Use the definition of the trigonometric functions to determine the sine, cosine, and		
solve real-world and		tangent ratio of an acute angle in a right triangle. Apply the inverse trigonometric		
mathematical problems.	G.RT.1.3	functions to find the measure of an acute angle in right triangles.	4.8, 4.9, 4.10, 4.11	
		Apply the trigonometric functions as ratios (sine, cosine, and tangent) to find side		
	G.RT.1.4	lengths in right triangles in real-world and mathematical problems.	4.8, 4.9, 4.10, 4.11	